BE Semester-III (I. C.) Question Bank

Subject : Circuit Theory (IC-302)

All questions carry equal marks (10 marks)

Q.1	Define the following terms: 1) Netw	ork 2) Network element	
	3) Brand	ch 4) Mash or loop	
	5) Node		
Q.2	Explain the concept of source transformation with suitable example.		
Q.3	What is signification of initial conditions? Write a note on initial		
	conditions in basic circuit elements.		
Q.4	Explain the following network definition.		
	1) Linearity2) I	Lumped & distributed networks	
	3) Active & passive network 4)	Unilateral and Bilateral network	
Q.5	State and Explain the initial condition for resistor, inductor and		
	capacitor at $t = 0+$ and $t = 0-$ time.		
Q.6	State & explain the Reciprocity theorem with suitable example.		
Q.7	Give difference between f-circuit and f-cutsets with suitable example.		
Q.8	Derive relationship between H parameter and ABCD parameter.		
Q.9	Explain the significance of poles and zeros.		
Q.10	Derive the condition of symmetry and reciprocity for Y-parameters.		
Q.11	Derive relationship between Z parameter and H parameter.		
Q.12	Explain concept of Duality with example.		
Q.13	Explain the concept of complex frequency. Also discuss the		
	significance of complex frequency.		
Q.14	Derive relationship between Y parameter and H parameter.		
Q.15	Explain Norton's theorem with suitable example.		
Q.16	Explain Thevenin's theorem with suitable example.		
Q.17	Explain Superposition theorem with suitable example.		
Q.18	For the circuit shown in the fig., find node voltages V_1 , V_2 and V_3 using node analysis.		

Q.21	In the circuit shown in the fig., switch is closed at $t = 0$, find i, di/dt, d^2i/dt^2 at $t = 0+$.	
Q.22	In the network shown in fig., steady state is reached with the switch K open, At t = 0, the switch is closed. For the element values shown determine values for Va (0-) and Va (0+). $ \int \frac{10 \Omega}{\sqrt{20 \Omega}} \sqrt{20 \Omega} + \frac{10 \Omega}{\sqrt{10 \Omega}} \sqrt{20 \Omega} + \frac{10 \Omega}{\sqrt{10 \Omega}} \sqrt{10 \Omega} \sqrt{10 \Omega} \sqrt{20 \Omega} + \frac{10 \Omega}{\sqrt{10 \Omega}} \sqrt{10 \Omega} \sqrt{10 \Omega} \sqrt{10 \Omega} \sqrt{10 \Omega} + \frac{10 \Omega}{\sqrt{10 \Omega}} \sqrt{10 \Omega} \sqrt{10 \Omega} \sqrt{10 \Omega} + \frac{10 \Omega}{\sqrt{10 \Omega}} \sqrt{10 \Omega} \sqrt{10 \Omega} + \frac{10 \Omega}{\sqrt{10 \Omega}} \sqrt{10 \Omega} \sqrt{10 \Omega} \sqrt{10 \Omega} \sqrt{10 \Omega} \sqrt{10 \Omega} + \frac{10 \Omega}{\sqrt{10 \Omega}} \sqrt{10 \Omega} \sqrt{10 \Omega} \sqrt{10 \Omega} + \frac{10 \Omega}{\sqrt{10 \Omega}} \sqrt{10 \Omega} \sqrt{10 \Omega} \sqrt{10 \Omega} + \frac{10 \Omega}{\sqrt{10 \Omega}} \sqrt{10 \Omega} \sqrt{10 \Omega} \sqrt{10 \Omega} + \frac{10 \Omega}{\sqrt{10 \Omega}} \sqrt{10 \Omega} \sqrt{10 \Omega} \sqrt{10 \Omega} + \frac{10 \Omega}{\sqrt{10 \Omega}} 10 \Omega$	
Q.23	In the network shown switch is opened at $t = 0$, solve for v, dv/dt, d^2v/dt^2 for $t = 0+$.	

